Category: AI
-
Technology readiness levels for machine learning systems
The development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end. Lack of diligence can lead to technical debt, scope creep and misaligned objectives, model misuse and failures, and expensive consequences. Engineering systems, on the other hand, follow well-defined processes and testing standards…
-
Beslissen: FEP, AI, Bayes
“We sample the world to ensure our predictions become a self-fulfilling prophecy.” Karl Friston De beslissingswetenschappen en neurowetenschappen werden recent verrijkt door het principe van vrije energie (Free Energy Principle / FEP) van Karl Friston. FEP is misschien wel het meest allesomvattende idee sinds de theorie van natuurlijke selectie van Charles Darwin. Samenvattend is het…
-
Rethinking Computational Approaches to the Mind
Rethinking Computational Approaches to the Mind Fundamental Challenges and Future Perspectives One-day Online Symposium21st October 2022 REGISTER HERE This one-day online event will bring together researchers with expertise in various areas such as complexity science, machine learning & artificial intelligence, information theory & data science, as well as computational/theoretical neuroscience & philosophy to explore different computational approaches…
-
Begin with the decision-maker
I enjoyed the article “The first step in AI might surprise you” on AI, ML, Data Science from Cassie so much, I decided to steal some quotes: Leaders, figure out who’s calling the shots. If it’s you, then let’s designate you “The Decision-Maker“ for this project. Otherwise, delegate the position to someone else and ask them to read the…
-
Will it ever happen?
Evolution of Brains and Computers: The Roads Not Taken – Can machines ever achieve true intelligence? , is a perspective article in entropy by Ricard Solé and Luís F. Seoane, has a great discussion on intelligence. When computers started to become a dominant part of technology around the 1950s, fundamental questions about reliable designs and…
-
Why Can the Brain (And Not a Computer) Make Sense of the Liar Paradox?
Ordinary computing machines prohibit self-reference because it leads to logical inconsistencies and undecidability. In contrast, the human mind can understand self-referential statements without necessitating physically impossible brain states. Why can the brain make sense of self-reference? This paper addresses this question by defining the Strange Loop Model, which features causal feedback between two brain modules,…
